High‐Throughput Inertial Focusing of Micrometer‐ and Sub‐Micrometer‐Sized Particles Separation

نویسندگان

  • Lei Wang
  • David S Dandy
چکیده

The ability to study individual bacteria or subcellular organelles using inertial microfluidics is still nascent. This is due, in no small part, to the significant challenges associated with concentrating and separating specific sizes of micrometer and sub-micrometer bioparticles in a microfluidic format. In this study, using a rigid polymeric microfluidic network with optimized microchannel geometry dimensions, it is demonstrated that 2 µm, and even sub-micrometer, particles can be continuously and accurately focused to stable equilibrium positions. Suspensions have been processed at flow rates up to 1400 µL min-1 in an ultrashort 4 mm working channel length. A wide range of suspension concentrations-from 0.01 to 1 v/v%-have been systematically investigated, with yields greater than 97%, demonstrating the potential of this technology for large-scale implementation. Additionally, the ability of this chip to separate micrometer- and sub-micrometer-sized particles and to focus bioparticles (cyanobacteria) has been demonstrated. This study pushes the microfluidic inertial focusing particle range down to sub-micrometer length scales, enabling novel routes for investigation of individual microorganisms and subcellular organelles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Focusing of sub-micrometer particles and bacteria enabled by two-dimensional acoustophoresis.

Handling of sub-micrometer bioparticles such as bacteria are becoming increasingly important in the biomedical field and in environmental and food analysis. As a result, there is an increased need for less labor-intensive and time-consuming handling methods. Here, an acoustophoresis-based microfluidic chip that uses ultrasound to focus sub-micrometer particles and bacteria, is presented. The ab...

متن کامل

Two-dimensional Acoustophoresis in Square Microchannel Enables Sub-micrometer Particle Focusing

Here, a square microchannel acoustophoresis device capable of two-dimensional focusing of sub-micrometer particles is presented. This opens the route to acoustic manipulation of smaller bioparticles such as bacteria. The device performance is compared to a conventional rectangular acoustophoresis channel that focuses particles in one dimension. Utilizing the change in the acoustic streaming vel...

متن کامل

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

Influence of reaction parameters on crystal phase growth and optical properties of ultrasonic assisted hydro- and solvothermal synthesized sub-micrometer-sized CdS spheres

Sub-micrometer-sized CdS spheres were synthesized by hydrothermal and solvothermal reactions using Cd(NO3)2.4H2O and CH4N2S raw materials at a constant stoichiometric 1 : 2, Cd : S molar ratio. Various conditions such as solvent type (water and/or ethanol), reaction time and temperature were examined for the synthesis of the targets. The sy...

متن کامل

Strong Magnetic Field Induced Segregation and Self-assembly of Micrometer Sized Non- Magnetic Particles

Micrometer and sub-micrometer sized non-magnetic particles were manipulated by an external strong magnetic field (e.g., 10 Tesla) with a high gradient. During the strong magnetic field effects, segregation of the non-magnetic particles was observed which could not be realised only with gravitational field. Numerical calculations were subsequently carried out to understand the effects on the ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017